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We consider the one-dimensional axisymmetrical unsteady motion of an 

electrically conducting perfect gas, subject to the force of Newtonian 

gravitation. We will assume the conductivity of the gas to be infinite, 

the magnetic field perpendicular to the trajectory of the gas molecules, 

and the viscosity and thermal conductivity negligible. 

The magnetic force lines may be: (1) straight and parallel to the axis 

of symmetry; (2) concentric circles with centers on the axis of symmetry; 

(3) helical lines. 

Let Nz be the component of the intensity vector along the axis of 

symmetry, and H 
(G 

the transverse component of the same vector. We introduce 

the notation hz = tt 2 1/8n, 

have hz # 0. h 

h4 = tt+’ 

d, 
= 0: in case (21, 

l/8 R. Then in case (1) above we will 

hz = 0, h 
4 

# 0; and in case (31, hz f 0 

and h 
9’, 

f 0. 

The equations of magneto-hydrodynamics for these cases may be written 

in the form 

Here r is the Euler coordinate of the particle, t the time, v the 

velocity, p the density, p the pressure, R the mass, C the gravitational 

constant, and y > 1 the Poisson coefficient. We shall assume that the 

velocity v of the gas particle is proportional to its distance r from the 
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axis of symmetry. That is, 

where p(f) is an arbitrary function of time, and p’(t) is its derivative. 

The linear dependence (2) of the velocity on the radius has been used 

previously in the work of Sedov (1, 2, 31, Lidov [ 4 I, Kulikovskii [ 5 1 , 
Iavorskaia [ 6 1 , and Korobeinikov [ 7 1. 

It can be established by direct substitution that system (11 has the 

following particular solution: 

where p(t) satisfies the equation 

(3) 

Here bl and b, are arbitrary constants and P(t) an arbitrary function 

such that its derivative P’(t) > 0. The function PI([) is related to P(t) 

by the relation 

c is the Lagrange coordinate. In the particular case where h 4 = 0, the 

function P(t) has the form P(t) = a15 * , where al is a constant. This 

case, and also the case where hZ = 0, and P(t) = a2e2 + a 
3’ 

where a2 and 

ras ;re arbitrary constants, were derived and investigated by Tavorskaia 

A solution was obtained for case G = 0 by Kulikovskii, who investigated 

it in detail, for case hZ = 0. We proceed to a consideration of the be- 

haviour of function f(p). Its form depends on the magnitudes of the con- 

stants bl, 
b3’ 

b5 and b,; and it distinguishes different types of motion 

of the gas. 

Case b., > 0 gives the motion described in reference [ 6 1. Also, if 

b3 = 0, function f(p) has the same form as in reference 15 1. Consequently, 

in that case, the same motion of the gas is possible as was considered in 

reference [ 5 I. For b3 < 0, b5 f 0, the following cases are possible: 
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In case I the type of motion depends on the number of roots of function 

f(p) and their distribution. 

(1) If for function f(p) there is one double root pO = 1, the gas will 

exist in the state of unstable equilibrium. 

(2) If the double root p,, f 1, a limit motion of the gas can exist, 

that is, expansion (or compression) of the gas at infinite time up to some 

finite volume of radius r = &J.,. For this, v -+ 0 as t + -. 

If the limit motion does not exist, there will also be the following 

possibilities 

(2a) For ~6 > 1 and vO < 0 complete compression of the gas takes place 

to the axis of symmetry, in finite time. 

(2b) For f~ > 1 and vO > 0, the expanding gas reaches the limiting 

distance r = ! cl0 from the axis of symmetry; and thereafter, under the 

action of the force, a reverse motion starts; that is, a complete com- 

pression of the gas takes place to the axis of symmetry, at infinite 

time. If in this case we assume that at the moment of constriction of the 

gas the velocity changes discontinuously, we have an example of pulsing 

periodic motion of the gas. 

(2~) For ~6 < 1 and vO > 0 a complete scattering of the gas would take 

place in infinite time, with the velocity v + 00 as t -) 00. 

(2d) For ~6 < 1 and ~6 < 0 the gas is initially compressed to some 

volume with radius r = [cl,, and thereafter is completely dispersed. 

(3) Function f(p) does not have roots. Then for vO < 0 the motion is 

analogous to case (2a), and for vO > 0, to case (2~). 

(4) Function f(p) has two roots p1 and ~2. If p1 < p2 < 1, there will 

be complete dispersal as in cases (2~) and (2d). If 1 < ~1~ < ~2, there 

will be complete condensation, as in cases (2a) and (2~). 

In case (2) we have f’(p) > 0. Complete dispersal of the gas occurs as 

in cases (2~) and (2d). 

For b3 = 0 and b5 = 0, motion of the types (2a), (2b), (2c), (2d) and 

(3) are possible. In the cases when the gas is dispersed, the velocity 

~+efl,as t-,00. Detailed investigation was carried out in the book 
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by Sedov [ 1 1. 

If bg = 0, b5 f 0. we have the following cases: 

III 
01 >O, BS <O, b,> 0, y > 2 1 bl>O, b:,>O, &SO 

bl<O, &>O, bT>O, y<2 Iv ‘1 bl+b;>O, b,>O, y TZ 2 

bl>O, bs<O, b,>O0, y<2 h>O, h<O, b<:O,. Y>Z 

V 
bl<O, bs>O, baO0, y>2 

VI 
h< 0, b>O, &GO, Y<:! 

biGO0, bg<O, bT>O bi>-0, &>O, bT<O 
bi+bs<O, b,>O, y-2 Lit-b,>O, &Co, Y ~-2 

VII 
b,> 0, &-CO, b7 CO, y<2 

bi<O, &>(A bT<O, y>2 

In case 3 the same motion is possible as in case (l), except that for 

complete dispersal, ‘v + 6 6. In case (4) the motion exists just as in 

case (3), except that v + c&as t+ 00. 

In case (5) we have complete dispersal of the gas (see (2c), (2d)) but 

v+esas t-+00. 

In case (6) complete condensation of the gas takes place in a finite 

period of time, as in cases (2a) and (2~). 

In case (7) a periodic oscillation of the gas takes place with a 

period depending on the quantities bl, bg, b5 and b,. In special cases, 

where f(p) has double roots, we have stable equilibrium of the gas. 

From the research presented here, it is evident that in the presence 

of gravitational force and the magnetic field with spiral lines fo force, 

complete dispersal of the gas is shown to be impossible, if bg > 0. Also 

if bg < 0, dispersal is shown to be in some cases possible and in some 

cases not possible. In the particular case when the magnetic field di- 

rection is along the axis of symmetry, dispersal of the gas is not 

possible [ 6 I , because bg > 0 for h 
4 

= 0. In the other particular case 

when the magnetic force lines are essentially closed concentric circles 

(hZ = 0). for b3 ( 0 dispersal is possible, and for by > 0 it is not. 

We remark in conclusion that in the case where y = 2, equation (11 

permits of an exact particular solution, containing two arbitrary func- 
tions: 

r 
7J = gj I*’ (t), 

P’ w p=- 
rp ’ P = IlK) v-4, 

h, = [Cl P(S)-- rI (Cl + %I p-4 
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h, = $ {c3 [<*P(E) -2?p1([)] - 3-GP"(q+ Cd} 

m = %P(t), PI' (5) = sp (4, 

f (i*) = ($,’ = cl!*-? - 2 c3 ln p + cj 

where cl, c2, . . . . ~5 are arbitrary constants, P(t) and n (5) are arbi- 

trary functions. A solution with two arbitrary functions can also be 

obtained for y = 1. 

Note added in proof. After this paper had been submitted for publica- 

tion, the author discovered that a solution analogous to (3) had also 

been published in a recent paper by McVittie [ 8 I. Analysis of the possible 

motions of the gas is missing in reference [ 8 1. 

The author is indebted to Korobeinikov and Kochina for several valu- 

able comments. 
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